Задание №2
Страница 2

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).

Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.

II

. Используя понятия интегральной функции распределения и определенного интеграла можно записать

¦

(

x

) =

F

¢

(

x

) или

F

(

x

) =

p

(

x

1

<

X

<

x

2

) =

.

Если определяет заштрихованную область в соответствующих пределах, то

p (х

<

Х

<

х

+

D

х)

»

¦

(х)

D

х.

Это соотношение можно представить в виде простого геометрического толкования для каждого класса.

Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе

Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе

Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.

Для дискретной случайной величины справедливо следующее равенство:

F

(

x

) =

P

(

X

<

x

) =

P

(

-

¥

<

X

<

x

) =

,

где суммирование распространяется на х

i

<

х.

В промежутке между двумя последовательными значениями Х функция

F

(х) постоянна. При переходе аргумента х через значение х

i

F

(х) скачком возрастает на величину p (Х

=

х

i

).

Рассмотрим p (х1

£

Х

<

х2). Если х2

>

х1, то очевидно, что

p (Х

<

х2)

=

p (Х

<

х1)

+

p (х1

£

Х

<

х2).

Тогда

p (х1

£

Х

<

х2)

=

p (Х

<

х2)

-

p (Х

<

х1)

=

F

(х2)

-

F

(х1),

т.е. вероятность попадания случайной величины в интервал

[

х1

;

х2) равен разности значений интегральной функции граничных точек.

Последнее условие можно использовать для нахождения вероятности p (Х

=

х1) для непрерывной случайной величины. Для этого рассмотрим предел

p

(

X

=

x

1

) =

,

т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.

Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х

Страницы: 1 2 3


Женщины и боязнь деформации
Руководитель - диктатор "во время работы". (Владимир Ленин) Утратить женственность не самая привлекательная профессиональная перспектива. Если посмотреть на российских женщин, которые занимают руководящие посты, то складывается впечатление, что многие из них не особенно хотят заниматься руководством, но в то же время не проти ...

Описание методики
Нами был выбран тест Липпмана «Логические закономерности» Инструкция: испытуемым предъявляется письменно-числовые ряды, проанализировав которые необходимо установить закономерности и построения. Для каждого ряда писать недостающие числа (см. приложение №1). Время заданий фиксируется (см. таблицу №2). Таблица №2 Время заполнения за ...

Методика диагностирования степени тревожности
Первоклассники, которые по разным причинам не могут справляться с учебной нагрузкой, со временем попадают в разряд неуспевающих, что, в свою очередь, приводит как к неврозам, так и к школобоязни. Дети, которые не приобрели до школы необходимого опыта общения со взрослыми и сверстниками, не уверенные в себе, боятся не оправдать ожидания ...