2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).
Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.
II
. Используя понятия интегральной функции распределения и определенного интеграла можно записать
¦
(
x
) =
F
¢
(
x
) или
F
(
x
) =
p
(
x
1
<
X
<
x
2
) =
.
Если
определяет заштрихованную область в соответствующих пределах, то
p (х
<
Х
<
х
+
D
х)
»
¦
(х)
D
х.
Это соотношение можно представить в виде простого геометрического толкования для каждого класса.
Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе
Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе
Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.
Для дискретной случайной величины справедливо следующее равенство:
F
(
x
) =
P
(
X
<
x
) =
P
(
-
¥
<
X
<
x
) =
,
где суммирование распространяется на х
i
<
х.
В промежутке между двумя последовательными значениями Х функция
F
(х) постоянна. При переходе аргумента х через значение х
i
F
(х) скачком возрастает на величину p (Х
=
х
i
).
Рассмотрим p (х1
£
Х
<
х2). Если х2
>
х1, то очевидно, что
p (Х
<
х2)
=
p (Х
<
х1)
+
p (х1
£
Х
<
х2).
Тогда
p (х1
£
Х
<
х2)
=
p (Х
<
х2)
-
p (Х
<
х1)
=
F
(х2)
-
F
(х1),
т.е. вероятность попадания случайной величины в интервал
[
х1
;
х2) равен разности значений интегральной функции граничных точек.
Последнее условие можно использовать для нахождения вероятности p (Х
=
х1) для непрерывной случайной величины. Для этого рассмотрим предел
p
(
X
=
x
1
) =
,
т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.
Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х
Методологические
принципы и методы изучения психологии труда
Связь психологии труда со всеми отраслями психологии опирается на психологическую теорию деятельности и общие закономерности психики человека, которые выражены в принципах психологии. Принцип — это основное правило, центральное понятие, которым руководствуются в познании и практике. Основными в отечественной психологии являются: принцип ...
Этнические экспектации и нормативное поведение
В отечественной этносоциологической и этнопсихологической литературе большинство авторов ставят вопрос об "объективной властности этнических норм", т.е. о том, насколько нормы обусловливают социальное поведение "человека этнического", независимо от каких бы то ни было типов "конвенций" или "авторитетно ...
Анализ результатов
Следующим этапом исследования стало сравнение результатов, полученных на группах сотрудников с высоким и низким уровнем адаптации. Результаты, полученные на выборках специалистов и рабочих, анализировались отдельно.
В группе специалистов с высоким уровнем адаптации 65% сотрудников женщины, в группе с низким уровнем адаптации все сотруд ...








